Firm Name

& Logo

Hidalgo County Drainage District No. 1 Drainage Statement

> Subdivision Name Hidalgo County, Texas

> > Prepared By: Firm's Name Address City, State, Zip Telephone Fax Email

> > > Date

Professional Engineering Seal

INDEX

FMENT

- Drainage Statement
- Drainage Calculations
- Intercept Coefficients Table "k" value
- Runoff Coefficients Table "c" value
- Weighted "c" Calculation
- Time of Concentration Determination Table
- Aerial Location Map
- Hidalgo County Rainfall Intensity Table
- USDA Soils Map
- Soils Legend & Description
- FEMA FIRM with site location
- Figure -3 Drainage Area Map (Tres Lagos Section-I)
- Subdivision Plat
- Drainage Layout

DRAINAGE STATEMENT SUBDIVISION NAME City/ETJ of

SUBDIVISION NAME is a resubdivision of **20.00** acres of land out of Section 232, TEXAS-MEXICAN RAILWAY COMPANY SURVEY, according to the patent recorded in Volume 4, Pages 142-143, Hidalgo County, Deed Records. This Subdivision is located in the **City of McAllen**, County of Hidalgo, Texas. The tract is currently vacant with a proposed land use for a school campus. This property is located in **Zone** "X on FEMA's Flood Insurance Rate Map, Community Panel No. **480334 0295 D**, Map Revised: June 6, 2000 Zone "X" is defined as areas determined to be outside 500-year flood-plain.

The soils in this area are mostly sandy clay loam with some clay loam (Soils 28), these soils belong to hydrologic group "B", which have a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. (See "USDA, NRCS Web Soil Survey" Soils maps and information for the Hidalgo County, Texas.

Surface storm runoff on this tract flows in a southeasterly direction. The pre-development volume of storm runoff is **2.24 cfs** based on the 10-year storm frequency, as per attached calculations. The post-development volume of storm runoff is **21.41 cfs** based on the 50-year storm frequency, as per attached calculations, which is an increase of 19.17 cfs.

In accordance with the City of McAllen's drainage policy, the proposed storm drainage system for this subdivision will consist of surface runoff from the building and walks into the proposed drives and parking lots, and collected by Type "A" and Type "C" inlets located at key points within the subdivision. The pipe size diameters shall range from 12" to 24". The proposed storm system shall discharge into Junction AB, flow through Junction H and outfall into Junction AH of a proposed trunk line along Tres Lagos Boulevard which discharges into the drain ditch located on the south side of the Tres Lagos development. This system is currently under construction and is anticipated to be completed by August 31, 2016. Figure -3 of the Tres Lagos Section -I Master Drainage Study has been included for reference.

The ultimate outfall will be into the J-08 ditch (H.C.D.D. #1), which is located approximately 3.8 miles east from this site. In accordance with the City of McAllen and the Hidalgo County Drainage District policy, the difference between the pre (10-yr) and the post (50-yr) development storm runoff shall not increase. Therefore, as per attached calculations, the required detention of **108,609 cubic feet (2.49 acre-feet)** of storm runoff shall be stored within the onsite detention pond, whose capacity is approximately **110,000 cubic feet** and also in the previously mentioned Tres Lagos Development drain ditch. The finish floor elevation for every building shall be set at 18 inches above the top of curb, measured from the center and at the front of this lot. This lot shall be graded to allow runoff to flow away from every building and towards the internal streets; this measure will avoid the concentration of runoff into other lots and will promote a consistent drainage pattern for the entire development (Also refer 1,2, To the TRES LAGOS Master Planned Community -Section-1- Drainage Statement).

By: <u>(signature)</u> Engineer Name

Date

Professional Engineering Seal

DRAINAGE REPORT

PROJECT NAME: IDEA at TRES LAGOS PROJECT NUMBER: 15138 DATE: June 6, 2016

I. Existing Condition-10 year

				Int. Coeff. "k"	0.305	Table 3-2
	Ex. Area:	871,201.05	sf	Kμ	3.28	
		20.000	ac	Length	1395	ft
	Imp.Area:	0.00	sf	Velocity	0.070739	ft/sec
	% Imp. :	0.00				
	Slope :	0.50%	%	SCS Curve N	umber:	61
	tc :	328.67	min			
B	Rainfall Intensi	ty (10yr)		0.938	in/hr	
	c factor (from M	Nomograph)		0.119		
3	Q peak existing	g condition:		2.24	cfs	
	Future area:	871,201.05 20.00	sf ac			
1.1	Estimated Imp.	Area:	235,000	sf	5	
	% Imp. :	0.27				
	Slope :	0.20%		SCS Curve N	umber:	71
	tc :	78.42	min	CA		
	Rainfall Intensi	ty (50yr)		3.472	in/hr	
	c factor (from N	Nomograph)		0.308		
	Q future cond.	= Aci = i *		21.41	*	0.31
				6.16423458	i	

time min.	time hour	i in/hr	Qin cfs	Vin cf	Qout cfs	Vout cf	REQ'D V cf
5	0.08	13.57	83.65	25095	2.24	672	24422
10	0.17	10.83	66.73	40037	2.24	1344	38693
15	0.25	9.10	56.11	50496	2.24	2016	48480
20	0.33	7.91	48.75	58496	2.24	2688	55808
25	0.42	7.03	43.30	64956	2.24	3360	61595
30	0.50	6.34	39.10	70380	2.24	4033	66347
35	0.58	5.80	35.73	75042	2.24	4705	70337
40	0.67	5.35	32.98	79149	2.24	5377	73772
45	0.75	4.98	30.67	82818	2.24	6049	76769
50	0.83	4.66	28.71	86139	2.24	6721	79418
60	1.00	4.14	25.54	91961	2.24	8065	83895
90	1.50	3.16	19.50	105320	2.24	12098	93222
120	2.00	2.60	16.00	115217	2.24	16130	99087
180	3.00	1.95	12.03	129885	2,24	24196	105690
240	4.00	1.59	9.78	140870	2.24	32261	108609

Storage Required: Storage Required: w/ release rate of: Storage / Ac. Development: 108,609 cf 2.493 Ac.-Ft. 2.24 cfs 0.125 Ac.Ft. per Ac.

Professional Engineering Seal

the second se	
Land Cover/ Flow Regime	"k"
Forest with heavy ground litter; hay meadow (overland flow)	0.076
Trash fallow or minimum tillage cultivation; contour or strip cropped; woodland (overland flow)	0.152
Short grass pasture (overland flow)	0.213
Cultivated straight row (overland flow)	0.274
Nearly bare and untilled (overland flow); alluvial	
fans in western mountain regions	0.305
Grassed waterway (shallow concentrated flow)	0.457
Unpaved (shallow concentrated flow)	0.491
Paved area (shallow concentrated flow); small upland gullies	0.619
EDRAMA	

Coefficients
Runoff Coefficient "c"
a second s
0.70-0.95
0.50-0.70
0.30-0.50
0.40-0.60
0.60-0.75
0.25-0.40
0.50-0.70
0.50.0.90
0.50-0.60
0.00-0.90
0.10-0.25
0.20-0.40
0.20-0.40
0.10-0.30
1
0.05.0.10
0.00-0.10
0.15-0.15
0.13-0.20
0.18-0.22
0.25-0.35
K)
0.70-0.95
0.80-0.95
0.70-0.85
0 75-0 85
0.10-0.00
0.75-0.95

 $C_W = (C_1A_1 + C_2A_2 + C_3A_3 + ... + C_nA_n) / A_{total}$

Cw = Weighted Runoff Coefficient (Composite Coefficient)

 C_n = Runoff Coefficient n-th term

 $A_n = Area of n-th term$

Atotal = Total Area (acres)

COMPUTATION DESCRI POINT EXISTINON DESCRI EXISTING Overla D.A.#1 Overla D.A.#2 Pitpe Fi D.A.#2 Overla				IDEA at	t TRES L	AGOS	ALION				
COMPUTATION DESCRI POINT RUNOFI Existing Overla D.A.#1 Overla D.A.#2 Pipe F D.A.#2 Overla											
COMPUTATION DESCRI POINT RUNOFI Existing Overla D.A.#1-D.A.#2 Pipe Fi D.A.#2-D.A.#3 Pipe Fi			OVE	RLAND FLC	MC	нс	ANNEL, PII	PE, STREET	, ETC. FLO	M	1
Existing Overla D.A.#1 Overla D.A.#2-D.A.#2 Pipe Fi D.A.#2-D.A.#3 Pipe Fi	PTION OF	U	HENGTH	GRADE	TIME	WIDTH/DIA.	GRADE	HLONG	VELOCITY	TIME	TOTAL TIME
D.A.#1 D.A.#1-D.A.#2 D.A.#2 D.A.#2 D.A.#2 D.A.#3 Pipe F		0.110	1305	(ar)	(MUN)	(11)	(0/)	(11)	(611)	(NIIN)	(MIN)
D.A.#1 Overla D.A.#1-D.A.#2 Ptpe Fl D.A.#2 Overla D.A.#2-D.A.#3 Ptpe F		0110	2001		0.00						0.001
D.A.#1-D.A.#2 Pipe Fi D.A.#2 Overla D.A.#2-D.A.#3 Pipe Fi	nd & Gutter	0.308	155		17.2			0	0.4	0.0	17.2
D.A.#2 Overla D.A.#2-D.A.#3 Pipe Fi	low	0.308						48	3.0	0.3	17.5
D.A.#2 Overla D.A.#2-D.A.#3 Pipe F											
D.A.#2-D.A.#3 Pipe FI	nd & Gutter	0.308	155		17.2			0	0.4	0.0	17.2
	wo	0.308						53	3.0	0.3	17.8
CHOM II WOND	nd & Gutter	A RAR	124		140			C	Y U	00	0.84
	The second	0.200	122		2			2.4	tio	0.0	5 U T
	- MO	00000						++	3.0	0.2	1.61
D.A.#5 Overla	nd & Gutter	0.308	11	2	8.6			0	0.4	0.0	8.6
D.A.#5-D.A.#4 Pipe FI	wo	0.308						98	3.0	0.5	18.3
D.A.#4 Overla	nd & Gutter	0.308	126	VII.	14.0	1		0	0.4	0.0	14.0
D.A.#4-D.A.#6 Pipe FI	wo	0.308		2	-			98	3.0	0.5	14.5
D.A.#7 Overla	nd & Gutter	0.308	94		10.4			0	0.4	0.0	10.4
D.A.#7-D.A.#6 Pipe Fl	wo	0.308			2			144	3.0	0.8	19.1
D.A.#6 Overla	nd & Gutter	0.308	130		14.4	C		0	0.4	0.0	14.4
D.A.#6-D.A.#8 Pipe Fl	wo	0.308						150	3.0	0.8	15.3
07 V 1	0 0 0	0000						•			0.01
	no a Gutter	0.000	771		13.0			0	0.4	0.0	13.6
L adu 0#12.0-0#12.0	MO	onc.n					X	40	3.0	0.3	13.4
D.A.#8 Overlau	nd & Gutter	0.308	104		11.6			0	0.4	0.0	11.6
D.A.#10-D.A.#10 Pipe FI	wo	0.308						138	3.0	0.8	12.3
D.A.#10 Overlai	nd & Gutter	0.308	472		52.4			546	0.4	22.8	75.2
D.A.#11-D.A.#11 Pipe FI	wo	0.308						418	3.0	2.3	77.5
D.A.#11 Overlau	nd & Gutter	0.308	500		55.6			0	0.4	0.0	55.6
D.A.#11-Outfall Pipe FI	MO	0.308						162	3.0	0.9	78.4

 $Tc = \frac{L}{(Vx60)}$

FORMULA FOR TIME OF CONCENTRATION USING THE RATIONAL METHOD, AS PER "TXDOT BRIDGE HYDRAULIC MANUAL"

Time Time Returns TorixL Drawwee Area T Time Returns Flowmare Prevents Time Returns Convertie Prevents Time Returns Convertie Prevents Time Returns Convertie Prevents Prevents			FLOWR	ATE DETERN	AGOS				
Exerting 20.000 0.119 156.0 10 1.644 3.36 12 $DA#1$ 0.260 0.308 17.2 50 8.523 0.68 12 $DA#1$ 0.260 0.308 17.2 50 8.523 0.82 12 $DA#5$ 0.360 0.308 17.2 50 8.530 1.86 12 $DA#5$ 0.360 0.308 17.8 50 8.390 1.86 12 $DA#5$ 0.790 0.308 17.8 50 8.360 1.86 12 $DA#5$ 0.790 0.308 14.8 50 8.165 0.30 12 $DA#5$ 0.744 0.700 0.308 14.8 50 8.164 0.77 12 $DA#5$ 0.744 0.700 0.308 14.8 50 9.055 0.37 12 $DA#5$ 0.744 0.200 0.3	COMPUTATION	TOTAL DRAINAGE AREA CONTRIBUTING TO POINT (acres)	o	TIME (SEE TABLE 1) (minutes)	RETURN FREQUENCY (years)	INTENSITY (in./hr.)	FLOWRATE (c.f.s.)	PIPE SIZE (inches)	MIN. SLOPE (FT./FT.)
0.4#1 0.260 0.308 17.5 50 8.52 0.68 12 $0.A#2$ 0.260 0.308 17.5 50 8.52 0.68 12 $0.A#2$ 0.360 0.308 17.5 50 8.459 0.68 12 $0.A#2$ 0.360 0.308 17.8 50 8.320 1.58 12 $0.A#2$ 0.790 0.308 17.8 50 8.360 0.51 0.71 0.790 0.308 14.1 50 9.134 0.51 1.51 0.50 1.51 0.50 1.51 0.51 1.51 0.72 1.51 0.72	xisting	20.000	0.119	155.0	10	1.644	3.93		
DA#1 0.200 0.308 11.2 50 8.523 0.68 12 DA#1-D.A#2 0.260 0.308 17.5 50 8.459 0.68 12 DA#1-D.A#2 0.360 0.308 17.5 50 8.523 0.58 1.58 12 DA#5 0.360 0.308 15.1 50 8.390 1.58 12 DA#5 0.790 0.308 15.1 50 8.395 0.51 15 DA#5 0.700 0.308 14.9 50 9.055 2.1 15 DA#5 0.270 0.308 14.5 50 9.355 0.72 15 DA#5 0.270 0.308 14.5 50 9.265 0.72 15 DA#5 0.446 0.150 0.308 14.5 50 9.265 1.41 DA#5 0.446 0.160 0.308 14.5 50 9.265 1.31 12 DA#5 0.									
DA#1-DA#2 0.260 0.308 17.5 50 8.459 0.68 12 DA#2 0.350 0.308 17.2 50 8.533 0.92 12 DA#2 0.350 0.308 17.2 50 8.533 0.92 12 DA#2 0.350 0.308 17.8 50 8.330 1.56 12 DA#5-DA#4 0.790 0.308 14.9 50 8.350 1.56 12 DA#5-DA#4 0.790 0.308 14.9 50 8.350 1.56 1.5 DA#5-DA#4 0.270 0.308 14.5 50 8.356 0.73 12 DA#5-DA#4 0.270 0.308 14.5 50 9.355 0.73 12 DA#5 0.346 0.308 14.4 50 9.355 0.73 12 DA#5 0.446 0.308 14.4 50 9.353 3.73 12 DA#7 0.10.4 0.038	0.A.#1	0.260	0.308	17.2	20	8.523	0.68		
DA#2 0.350 0.306 172 50 8.533 0.92 1.56 1.2 50 8.530 1.56 1.2 1.56 <td>0.A.#1-D.A.#2</td> <td>0.260</td> <td>0.308</td> <td>17.5</td> <td>20</td> <td>8.459</td> <td>0.68</td> <td>12.00</td> <td>0.036%</td>	0.A.#1-D.A.#2	0.260	0.308	17.5	20	8.459	0.68	12.00	0.036%
DA#2-DA#3 0610 0.308 17.8 50 8.390 1.58 12 DA#2-DA#3 0.180 0.308 154 50 9.065 2.11 15 DA#5 0.780 0.308 154 50 9.065 211 15 DA#5 0.780 0.308 154 50 9.065 0.51 15 DA#5 0.270 0.308 14.0 50 9.265 0.69 12 DA#5 0.270 0.308 14.5 50 9.233 3.73 15 DA#5 0.270 0.308 14.5 50 9.233 3.73 15 DA#5 0.44 0.150 0.308 14.5 50 9.233 3.73 12 DA#6 0.150 0.308 14.5 50 9.262 1.31 0.49 DA#7 0.150 0.308 15.3 50 9.262 1.31 0.46 DA#6 0.160 0.308<).A.#2	0.350	0.308	17.2	50	8.523	0.92		
DA#5 0.180 0.306 14.9 50 9.134 0.51 15 DA#5 DA#5 0.790 0.306 15.1 50 9.134 0.51 15 DA#5 DA#5 0.790 0.308 8.6 50 11.478 0.96 12 DA#5 DA#5 0.270 0.308 18.3 50 8.265 0.69 12 DA#5.DA#4 0.270 0.308 14.5 50 9.395 0.72 15 DA#5.DA#4 0.270 0.308 14.5 50 9.395 0.72 15 DA#5.DA#6 0.150 0.308 19.1 50 9.233 3.73 12 DA#5.DA#6 0.150 0.308 19.1 50 9.233 3.73 12 DA#5.DA#6 0.150 0.308 19.1 50 9.053 3.73 12 DA#6 0.415 0.308 19.4 50 9.026 0.45 12).A.#2-D.A.#3	0.610	0.308	17.8	50	8.390	1.58	12.00	0.195%
DA#3 0.180 0.306 14.9 50 9.134 0.51 DA#5 0.790 0.306 15.1 50 9.134 0.51 15 DA#5 0.790 0.306 15.1 50 9.065 2.21 15 DA#5 0.270 0.306 18.3 50 8.65 0.69 12 DA#5 0.270 0.306 14.0 50 8.265 0.69 12 DA#7 0.250 0.308 14.6 50 9.233 3.77 15 DA#7 0.150 0.308 14.4 50 9.235 0.73 15 DA#7 0.150 0.308 14.4 50 9.235 0.72 16 DA#7 0.150 0.308 14.4 50 9.255 0.75 16 DA#7 0.160 0.308 19.4 50 9.255 0.75 16									
DA#5DA#4 0.790 0.308 15.1 50 9.065 2.21 15 DA#5DA#4 0.270 0.308 8.6 50 11478 0.96 12 DA#5DA#4 0.270 0.308 18.3 50 8.265 0.69 12 DA#5DA#4 0.270 0.308 14.0 50 9.365 0.75 12 DA#4 0.250 0.308 14.0 50 9.235 0.72 12 DA#7 0.150 0.308 14.6 50 9.235 0.72 12 DA#7 0.150 0.308 14.4 50 9.235 0.73 12 DA#6 DA#8 1.920 0.308 14.4 50 9.252 13.7 DA#6 DA#8 0.160 0.308 11.6 50 9.252 13.7 DA#6 DA#8 0.160 0.308 11.6 50	D.A.#3	0.180	0,308	14.9	50	9.134	0.51		
DA#5 0.270 0.308 8.6 50 11.478 0.96 12 $DA#5$ - $DA#4$ 0.270 0.308 18.3 50 8.265 0.691 12 $DA#5$ - $DA#4$ 0.270 0.308 14.0 50 8.265 0.691 12 $DA#4$ 0.150 0.308 14.0 50 9.395 0.72 12 $DA#4$ 0.150 0.308 14.5 50 9.395 3.73 12 $DA#4$ 0.150 0.308 14.4 50 8.090 0.31 12 $DA#6$ 0.150 0.308 14.4 50 8.090 0.31 12 $DA#6$ 0.180 0.308 14.4 50 9.262 1.31 12 $DA#6$ 0.308 13.6 50 9.282 0.53 12 $DA#6$ 0.180 0.308 11.6 50 9.532	0.A.#3-D.A.#4	0.790	0.308	15.1	50	9.065	2.21	15.00	0.116%
DA#5-DA#4 0.270 0.308 18.3 50 8.265 0.691 12 $DA#4$ 0.270 0.308 14.0 50 8.265 0.691 12 $DA#7$ 0.250 0.308 14.5 50 9.395 0.72 $DA#7$ 0.150 0.308 10.4 50 9.233 3.73 12 $DA#7$ 0.150 0.308 10.4 50 9.232 0.72 12 $DA#6$ $DA#6$ 0.160 0.308 14.4 50 9.262 1.31 $DA#6$ $DA#8$ 0.180 0.308 14.4 50 9.262 1.31 $DA#6$ $DA#8$ 0.308 13.6 50 9.262 0.31 1.2 $DA#8$ $DA#8$ 0.308 13.6 50 9.532 0.53 0.45 1.2 $DA#8$ $DA#8$ 0.308 75.2 50) A #5	0.270	0.308	86	50	11 478	0.96		
DA#4 0.250 0.308 14.0 50 9.395 0.72 $DA#4$ DA#6 0.308 14.6 50 9.333 3.73 $15.$ $DA#7$ 0.150 0.308 10.4 50 9.233 3.73 $12.$ $DA#7$ 0.150 0.308 10.4 50 9.232 0.37 $12.$ $DA#6$ 0.150 0.308 14.4 50 9.262 1.31 $12.$ $DA#6$ 0.180 0.308 14.4 50 9.025 5.34 $18.$ $DA#6$ 0.180 0.308 11.4 50 9.025 5.34 $18.$ $DA#8$ 0.180 0.308 11.6 50 9.025 5.34 $18.$ $DA#8$ $DA#8$ 0.180 0.308 12.6 9.025 0.53 $12.$ $DA#8$ $DA#8$ 0.180 12.6 9.028 0.60 0.50	D.A.#5-D.A.#4	0.270	0.308	18.3	50	8.265	0,69	12.00	0.037%
0.4 # 4 0.250 0.290 1.310 0.290 0.72 0.72 $D.A # 4.D A # 6$ 1.310 0.308 14.6 50 9.233 3.73 15 $D.A # 4.D A # 6$ 0.150 0.308 10.4 50 9.235 3.73 15 $D.A # 6$ 0.150 0.308 10.4 50 9.262 1.31 1.31 $D.A # 6$ 0.460 0.308 14.4 50 9.262 1.31 1.31 $D.A # 6$ 0.180 0.308 14.4 50 9.025 5.34 18 $D.A # 6.D A # 8$ 0.180 0.308 11.4 50 9.025 5.34 18 $D.A # 0$ 0.180 0.308 11.4 50 9.025 5.34 18 $D.A # 0$ 0.180 0.308 11.4 50 9.025 0.53 12 $D.A # 0$ $D.A # 0$ $D.A # 0$ $D.A # 0$			1/1						
D.A.#t D.A.#6 1.310 0.308 14.5 50 9.233 3.73 15 $D.A.#7$ 0.150 0.308 10.4 50 9.023 3.73 12 $D.A.#7$ 0.150 0.308 10.4 50 9.026 1.31 12 $D.A.#7$ 0.160 0.308 14.4 50 8.090 0.37 12 $D.A.#5$ 0.460 0.308 14.4 50 8.090 0.37 12 $D.A.#5$ 0.308 14.4 50 9.025 5.34 18 $D.A.#8$ 0.180 0.308 11.64 50 9.025 0.45 12 $D.A.#8$ $D.A.#8$ 0.180 0.308 11.6 50 9.025 0.45 12 $D.A.#8$ $D.A.#8$ $D.A.#1$ 0.308 11.6 0.45 12 0.45 12 $D.A.#8$ $D.A.#10$ 0.308).A.#4	0.250	0.308	14.0	50	9.395	0.72		
A#7 0.150 0.308 10.4 50 10.641 0.49 12 $DA#7$ - $DA#6$ 0.150 0.308 19.1 50 8.090 0.37 12 $DA#6$ 0.460 0.308 19.1 50 8.090 0.37 12 $DA#6$ 0.460 0.308 14.4 50 8.090 0.37 12 $DA#6$ 0.460 0.308 14.4 50 9.025 5.34 18 $DA#8$ 0.180 0.308 15.3 50 9.025 5.34 12 $DA#8$ 0.180 0.308 11.6 50 9.025 0.45 12 $DA#8$ $DA#8$ 0.180 0.308 11.6 50 9.026 0.45 12 $DA#8$ $DA#10$ 0.308 12.3 50 9.026 0.45 12 $DA#10$ 0.308 72.2 50 9.93	0,A,#4-D.A.#6	1.310	0.308	14.5	50	9.233	3.73	15.00	0.332%
DA#7 0.150 0.308 10.4 50 10.641 0.49 DA#7-DA#6 0.150 0.308 19.1 50 8.090 0.37 12. DA#7-DA#6 0.150 0.308 14.4 50 9.262 1.31 DA#6-DA#8 1.920 0.308 14.4 50 9.262 1.31 DA#8-DA#8 0.180 0.308 15.3 50 9.025 5.34 18 DA#80 0.180 0.308 15.3 50 9.025 5.34 18 DA#80 0.180 0.308 13.6 50 9.252 0.53 12 DA#80 0.180 0.308 11.6 50 8.026 0.45 12 DA#80 0.180 0.308 12.3 50 9.938 7.01 24 DA#10 2.290 0.308 7.1.6 50 9.938 7.01 24 DA#10 2.290 0.308 7.5.5 50 9.									
DA#F-DA#6 0.150 0.308 19.1 50 8.090 0.37 12 DA#F-DA#6 0.460 0.308 14.4 50 9.262 1.31 12 DA#F-DA#8 1.920 0.308 14.4 50 9.262 1.31 12 DA#6-DA#8 0.180 0.308 153 50 9.262 1.31 12 DA#8-DA#8 0.180 0.308 11.6 50 9.025 5.34 18 DA#8-DA#8 0.180 0.308 11.6 50 9.025 5.34 18 DA#8-DA#8 0.180 0.308 11.6 50 9.025 5.34 12 DA#8-DA#8 0.180 0.308 11.6 50 9.025 0.37 12 DA#10 2.290 0.308 7.52 50 9.938 7.01 24 DA#11 9.580 0.308 75.2 50).A.#7	0.150	0.308	10.4	50	10.641	0.49		
DA.#6 0.460 0.308 14.4 50 9.262 1.31 DA.#6 0.308 15.3 50 9.025 5.34 18 DA.#6 0.308 15.3 50 9.025 5.34 18 DA.#8 0.180 0.308 13.6 50 9.532 0.53 12 DA.#8 0.180 0.308 13.6 50 9.532 0.53 12 DA.#8 0.180 0.308 13.6 50 9.532 0.53 12 DA.#8 0.190 0.308 11.6 50 8.026 0.45 12 DA.#10 2.290 0.308 75.2 50 9.938 7.01 24 DA.#11.DA.#11 9.580 0.308 77.5 50 3.499 10.33 24 DA.#11.Dutal1 10.390 0.308 77.5 50 3.499 10.33 24 DA.#11.Dutal1 19.970 0.308 77.5 50 <td< td=""><td>0.A.#7-D.A.#6</td><td>0.150</td><td>0.308</td><td>19.1</td><td>20</td><td>8.090</td><td>0.37</td><td>12.00</td><td>0.011%</td></td<>	0.A.#7-D.A.#6	0.150	0.308	19.1	20	8.090	0.37	12.00	0.011%
DA#6 1.320 0.308 153 50 9.025 5.34 18 DA#6 0.180 0.308 153 50 9.025 5.34 18 DA#8 0.180 0.308 13.6 9.025 5.34 18 DA#8 0.180 0.308 11.6 50 9.025 5.34 18 DA#8 0.180 0.308 11.6 50 9.026 0.45 12 DA#10 2.290 0.308 12.3 50 9.938 7.01 24 DA#10 7.290 0.308 77.5 50 9.938 7.01 24 DA#11 9.580 0.308 77.5 50 3.499 10.33 24 DA#11 0.308 55.6 50 4.355 13.95 24.335 24.337 24.337 24.337 24.337 24.337 24.337 24.337 24.337	1 A #6	U AGN	0.200	14.4	ED.	0 200	1.24		
DA#8 0.180 0.308 13.6 50 9.532 0.53 0.54 10.212 0.60 $D.A.#10$ 2.290 0.308 12.3 50 9.938 7.01 24 $D.A.#11$ 9.580 0.308 77.5 50 9.938 7.01 24 $D.A.#11$ 0.308 77.5 50 9.3499 10.33 24 $D.A.#11$ 0.308 78.4 50 3.472 21.37	V A #6_D A #8	050 1	0.000	C 31	50	0.075	NC Y	10 00	0.0500/
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Denra Durra	0201	0000	201	20	7772	10.0	10,00	0/ 607.0
D.A.#8-D.A.#8 0.180 0.308 19.4 50 8.026 0.45 12 D.A.#8 0.190 0.308 11.6 50 10.212 0.60 D.A.#8 0.190 0.308 11.6 50 10.212 0.60 D.A.#10 2.290 0.308 12.3 50 9.938 7.01 24. D.A.#10 2.290 0.308 75.2 50 9.938 7.01 24. D.A.#11-D.A.#11 9.580 0.308 75.2 50 3.571 8.02 24. D.A.#11-D.A.#11 9.580 0.308 77.5 50 3.499 10.33 24. D.A.#11-D.A.#11 9.580 0.308 77.5 50 3.499 10.335 24. D.A.#11-D.A.#11 10.390 78.4 50 4.355 13.95 24. D.A.#11-D.M.#11 19.970 0.308 78.4 50 3.472 21.37 24.	0,A,#9	0.180	0.308	13.6	50	9.532	0.53		
DA#8 0.190 0.308 11.6 50 10.212 0.60 DA#10-DA#10 2.290 0.308 12.3 50 9.938 7.01 24. DA#10-DA#10 2.290 0.308 12.3 50 9.938 7.01 24. DA#10 7.290 0.308 75.2 50 3.571 8.02 DA#11-DA#11 9.580 0.308 77.5 50 3.499 10.33 24. DA#11-DA#11 9.580 0.308 77.5 50 3.499 10.33 24. DA#11-DA#11 9.580 0.308 77.5 50 3.499 10.33 24. DA#11-DA#11 9.580 0.308 77.5 50 3.499 10.335 24. DA#11-DA#11 10.390 0.308 78.4 50 3.472 21.37 24.	,A,#8-D,A,#8	0.180	0.308	19.4	50	8.026	0.45	12.00	0.016%
D.A.#10-D.A.#10 2.290 0.308 12.3 50 9.938 7.01 24. D.A.#10 7.290 0.308 75.2 50 9.938 7.01 24. D.A.#10 7.290 0.308 75.2 50 3.571 8.02 D.A.#11 9.580 0.308 77.5 50 3.499 10.33 24. D.A.#11 0.367 0.308 77.5 50 3.499 10.33 24. D.A.#11 10.390 0.308 77.5 50 3.459 10.335 24. D.A.#11-Outfall 10.390 0.308 55.6 50 4.355 13.95 D.A.#11-Outfall 19.970 0.308 78.4 50 3.472 21.37 24.	1.A.#8	0.190	0.308	11.6	50	10.212	0.60		
D.A.#10 7.290 0.308 75.2 50 3.571 8.02 D.A.#11-D.A.#11 9.580 0.308 77.5 50 3.499 10.33 24 D.A.#11-D.A.#11 9.580 0.308 77.5 50 3.499 10.33 24 D.A.#11-D.A.#11 9.580 0.308 77.5 50 3.499 10.33 24 D.A.#11 10.390 0.308 55.6 50 4.355 13.95 D.A.#11-Outfall 19.970 0.308 78.4 50 3.472 21.37	0.A.#10-D.A.#10	2.290	0.308	12.3	50	9.938	7.01	24.00	%960.0
D.A.#10 7.290 0.308 75.2 50 3.571 8.02 D.A.#11-D.A.#11 9.580 0.308 77.5 50 3.499 10.33 24. D.A.#11-D.A.#11 9.580 0.308 77.5 50 3.499 10.33 24. D.A.#11 0.390 0.308 55.6 50 4.355 13.95 D.A.#11-Outfall 19.970 0.308 78.4 50 3.472 21.37 24.									
D.A.#11-D.A.#11 9.580 0.308 77.5 50 3.499 10.33 24. D.A.#11 10.390 0.308 55.6 50 4.355 13.95 D.A.#11-Outfall 19.970 0.308 78.4 50 3.472 21.37 24.).A.#10	7.290	0.308	75.2	50	3.571	8.02		
D.A.#11 10.390 0.308 55.6 50 4.355 13.95 D.A.#11-Outfall 19.970 0.308 78.4 50 3.472 21.37 24.).A.#11-D.A.#11	9.580	0.308	77.5	50	3.499	10.33	24.00	0.209%
D.A.#11-Outfall 19.970 0.308 78.4 50 3.472 21.37 24	1 4 415	10 300	A 308	8.88	50	1 355	12.05		
U.A.#11-Outall 18:3/0 0.308 /6.4 00 3.4/2 21.3/ 24	A BAS CONTROL	0000	00000	0.00	8	1000	10.00	00.00	0.00.00
	J.A.#11-Outal	0/6.61	0.308	/8.4	00	3.4/2	21.3/	24.00	0.894%

Φ (Tc + d)

USING THE RATIONAL METHOD, AS PER "TXDOT BRIDGE HYDRAULIC MANUAL"

Appendix 1.0 HIDALGO COUNTY RAINFALL INTENSITY TABLES

based on Weather Bureau (NWS) Technical Paper No. 40 "Rainfall Frequency Atlas of the United States"

formula $l = b/(t_c+d)^e$

TIME	2 yr.	5 yr.	10 yr.	25 уг.	50 уг.	100 yr.		TIME	2 ут.	5 yr.	10 yr.	25 yr.	50 yr.	100 уг.
1	10.404	12.626	14.283	16.353	17.386	17.952		36	3,095	3.866	4.486	5.189	5.701	6.098
2	9.653	11.721	13.281	15.215	16.210	16.793		37	3.040	3.799	4.410	5.103	5.608	6.001
3	9.012	10.950	12.426	14.244	15.204	15.797		38	2.986	3.735	4.337	5.019	5.519	5,908
4	8,458	10.286	11,687	13.405	14.333	14.929		39	2.935	3.673	4.267	4.939	5.433	5.817
5	7.974	9.706	11.042	12.671	13.570	14.165		40	2.886	3.614	4.199	4.861	5.350	5.730
6	7.546	9.194	10,472	12.023	12.895	13.487		41	2.838	3.557	4.134	4.786	5.270	5.646
7	7.167	8.740	9.966	11.447	12.294	12.881		42	2.793	3.501	4.071	4.714	5.193	5.565
8	6.827	8.334	9,512	10.930	11.755	12.336		43	2.748	3.448	4.010	4.644	5.118	5.487
9	6.520	7.968	9.103	10.464	11.268	11.841		4 4	2.706	3.396	3.951	4.577	5.046	5.411
10	6.243	7.636	8.732	10.042	10.825	11.391		45	2.665	3.346	3,895	4,511	4.976	5.337
11	5.990	7.334	8.394	9.656	10.421	10.979		46	2.625	3.298	3.840	4.448	4.908	5.266
12	5.758	7.058	8.084	9.303	10.051	10.601		47	2.586	3.251	3.786	4.387	4.843	5.197
13	5.546	6.804	7.799	8.978	9.710	10.252		48	2.549	3.206	3.735	4.328	4.779	5.130
14	5.350	6.569	7.536	8.678	9.395	9.928		49	2.513	3.162	3,685	4.270	4.717	5.065
15	5.169	6.353	7.293	8.400	9.102	9.628		50	2.477	3.120	3.636	4.215	4.658	5.002
16	5.000	6.151	7.067	8.142	8.831	9.348		51	2.443	3.078	3.589	4.161	4,600	4.941
17	4.843	5.964	6.856	7.902	8,577	9.087		52	2.410	3.038	3.543	4.108	4.543	4.881
18	4,697	5.789	6.659	7.677	8.340	8.842		53	2.378	2.999	3.499	4.057	4.488	4.824
19	4.560	5.625	6.475	7.466	8.117	8.612	N	54	2.347	2.962	3.456	4.007	4.435	4.767
20	4,432	5,472	6.302	7.268	7.908	8.396	P	55	2.317	2.925	3,414	3.959	4.383	4.713
21	4.311	5.327	6,139	7.082	7.711	8.192		56	2.288	2.889	3.373	3.912	4.333	4.659
22	4.198	5,191	5.985	6.906	7.525	8.000		57	2.259	2.854	3.333	3.867	4.284	4.608
23	4.090	5.062	5.840	6.740	7.349	7.817		58	2.231	2.821	3.295	3.822	4.236	4.557
24	3,989	4,941	5.703	6.583	7,183	7.644		59	2.204	2.788	3.257	3.779	4.189	4.508
25	3.893	4.825	5.572	6.434	7,025	7.480		60	2.178	2.756	3.220	3.737	4.144	4.460
26	3.802	4.716	5.449	6.293	6.875	7.324		65	2.056	2,607	3.050	3.541	3.933	4.237
27	3.715	4.612	5.331	6,158	6.732	7.176		70	1.948	2.475	2.899	3.368	3.745	4.038
28	3.633	4.513	5.220	6.030	6.596	7.034		75	1,852	2,358	2.765	3.212	3.577	3.860
29	3.554	4.419	5.113	5.908	6.467	6.899		80	1.765	2.252	2.643	3.073	3.426	3.699
30	3.480	4,329	5.011	5,792	6.343	6.769		85	1.688	2.156	2.533	2.946	3.289	3.554
31	3.408	4.244	4.914	5,680	6.224	6.646		90	1.617	2.069	2.434	2.831	3.164	3.421
32	3.340	4.161	4.821	5.574	6.111	6.527		95	1.552	1.990	2.342	2.726	3.050	3.299
33	3.275	4.083	4.732	5.472	6.002	6.413		100	1.493	1.917	2.258	2.629	2.944	3.187
34	3.212	4.008	4.646	5.374	5.897	6.304		105	1.439	1.850	2.181	2.540	2.847	3.083
35	3.152	3.935	4.564	5.280	5.797	6.199		110	1.389	1.788	2,109	2.457	2.757	2.988
where:		2уг		5yr		l0yr			25уг		50yr		100уг	
e=		0.831		0,795		0.778			0.771		0.749		0.740	
р=		74		80		87			98		99		103	
d=		9.6		9.2		9.2			9.2		9,2		9.6	

Prepared By Melden & Hunt, Inc.

Appendix 1.0 (cont.) HIDALGO COUNTY RAINFALL INTENSITY TABLES (cont.)

based on Weather Bureau (NWS) Technical Paper No. 40 "Rainfall Frequency Atlas of the United States"

formula I = $b/(t_e+d)^e$

						loni	Ê	0. (.2						
TIME	2 уг	5 yt.	10 yr.	25 уг.	50 уг.	100 yr.		TIME	2 yr.	5 yr.	10 yr.	25 уг.	50 yr.	100 ут.
115	1.342	1.731	2.043	2.380	2.674	2.898		290	0.647	0.860	1.031	1.209	1.384	1.514
120	1,299	1.677	1.981	2.309	2.596	2.815		295	0.639	0,849	1.018	1.193	1.367	1.496
125	1.259	1.628	1.924	2.242	2.523	2.737		300	0.630	0.838	1.005	1.178	1.350	1.478
130	1.221	1.581	1.870	2.180	2.455	2.665		305	0.622	0.828	0.992	1.164	1.334	1.460
135	1.186	1.537	1.819	2.122	2.391	2.596		310	0.614	0.817	0.980	1.150	1.319	1.444
140	1.153	1.496	1.771	2.067	2.331	2.532		315	0.606	0.807	0.969	1.136	1.303	1.427
145	1.122	1.457	1.727	2.015	2.274	2.471		320	0.598	0.797	0.957	1.123	1,288	1,411
150	1.093	1.421	1.684	1.966	2.220	2.413		325	0.591	0.788	0.946	1.F10	1.274	1.395
155	1.065	1.386	1.644	1.919	2.169	2.359		330	0.583	0.779	0.935	1.097	1.260	1.380
160	1.039	1.354	1.606	1.876	2.121	2.307		335	0.576	0.770	0.924	1,085	1.246	1.365
165	1.014	1.323	1.570	1.834	2.075	2.258		340	0.570	0.761	0.914	1.073	1.233	1.351
170	0.991	1.293	1.536	1.794	2.032	2.211		345	0.563	0.752	0.904	1.061	1.220	1.337
175	0.968	1.265	1.504	1.757	1.990	2.167		350	0.556	0.744	0.894	1.050	1.207	1,323
180	0.947	1.239	1.473	1.721	1,951	2.124		355	0.550	0.736	0.885	1.039	1.195	1.309
185	0.927	1.213	1.443	1.686	1.913	2.084		360	0.544	0.728	0.875	1.028	1,182	1.296
190	0.907	1.189	1.415	1.654	1.877	2.045		365	0.538	0.720	0.866	1.017	1.171	1.284
195	0.889	1.166	1.388	1.622	1.842	2.008		370	0.532	0.713	0.857	1.007	1.159	1.271
200	0.871	1.144	1,362	1.592	1.809	1.972		375	0.526	0.705	0.849	0.997	1.148	1.259
205	0.854	1.122	1,337	1.564	1.778	1.938		380	0.521	0.698	0.840	0.987	1.137	1.247
210	0.838	1.102	1,313	1.536	1.747	1.906		385	0.515	0.691	0.832	0.977	1.126	1.235
215	0.823	1.082	1.290	1.510	1.718	1.874		39 0	0.510	0.684	0.824	0.968	1,115	1.224
220	0.808	1.063	1.268	1.484	1.690	1.844		395	0.504	0.677	0.816	0.958	1.105	1.212
225	0.793	1.045	1.247	1.460	1.663	1,815		400	0.499	0.671	0.808	0.949	1.095	1.201
230	0.780	1.028	1.227	1.436	1.637	1.787		405	0.494	0.664	0.800	0.940	1.085	1.191
235	0.766	1.011	1,207	1,413	1.611	1.759		410	0.489	0.658	0.793	0.932	1.075	1.180
240	0.754	0.995	1.189	1.392	1.587	1.733		_415	0.485	0.652	0.786	0.923	1.066	1.170
245	0.741	0.979	1.170	1.370	1.564	1.708		420	0.480	0.646	0.779	0.915	1.056	1.160
250	0.729	0.964	1.153	1.350	1.541	1.684		425	0.475	0.640	0.772	0.907	1.047	1.150
255	0.718	0.950	1.136	1.330	1.519	1.660		430	0.471	0.634	0.765	0.899	1.038	1.140
260	0.707	0.936	1.119	1.311	1.498	1.637		435	0.466	0.628	0.758	0.891	1.029	1.131
265	0.696	0.922	1.103	1.293	1.477	1.615		440	0.462	0.623	0.751	0.883	1.021	1.121
270	0.686	0.909	1.088	1.275	1.458	1.594		445	0.458	0.617	0.745	0.876	1.012	1,112
275	0.676	0.896	1.073	1.257	1.438	1.573		450	0.454	0.612	0.739	0.869	1.004	1.103
280	0.666	0.884	1.059	1.241	1.420	1.553		455	0.450	0.607	0.733	0.861	0.996	1.094
285	0.657	0.872	1.045	1.224	1.402	1.533		460	0.446	0.602	0.726	0.854	0.988	1.086
where:		2ут		5yr		10ут			25ут		50ут		100yr	
e=		0.831		0.795		0.778	•		0.771		0.749		0.740	
b=		74		80		87			98		99		103	
d≂		9.6		9.2		9.2			9.2		9.2		9,6	
				Б		1 15 14	1.1	0.77						

Prepared By Melden & Hunt, Inc.

National Cooperative Soil Survey

Page 1 of 4

Area of Interest (AOI)	C The soil surveys that comprise your AOI were mapped at 1:20.	C/D Warning: Soil Map may not be valid at this scale.	D Enlargement of maps beyond the scale of mapping can cause Not rated or not available misunderstanding of the detail of mapping and accuracy of soil placement. The maps do not show the small areas of contrast	Streams and Canals Streams and Canals Please rely on the bar scale on each map sheet for map	auon Rais	Interstate Highways Source of Map: Natural Resources Conservation Service Veb Soil Survey URL: http://websoilsurvey.nrcs.usda.gov	Major Roads Local Reads projection, which preserves direction and shape but distorts	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accu	Aerial Photography calculations of distance or area are required.	This product is generated from the USDA-NRCS certified data	the version date(s) listed below.	Soil Survey Area: Hidalgo County, Texas Survey Area Data: Version 12 Sen 22 2015	Colleman unite and Inholad (are some allound for more soular 1.50	outimap utilits are labeled (as space allows) for map scales 1.50	Date(s) aerial images were photographed: Feb 8, 2015—Fel	2015	The orthophoto or other base map on which the soil lines were	compiled and digitized probably differs from the background imageny displayed on these mans. As a result, some minor shi	of map unit boundaries may be evident.		
	MAP LEGEN	Vrea of Interest (AOI)	ing Polygons	A/D	tru: d/8	200	Not rated or not available	ing Lines Backo	A	AD	8	B/D	U	CID	D	Not rated or not available	ing Points	*	AVD	В	B/D

Ē

Hydrotogic Soil Group—Hidalgo County, Texas (IDEA Tres Lagos)

Natural Resources Conservation Service

USDA

Hydrologic Soil Group

Ну	/drologic Soil Group— Su	mmary by Map Unit	- Hidaigo County, Texas (TX)	215)
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
28	Hidalgo sandy clay loam, 0 to 1 percent slopes	В	20.4	100.0%
Totals for Area of Inter	est		20.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified

